ELEN0037 Microelectronic IC Design

Prof. Dr. Michael Kraft

Lecture 2: Technological Aspects

- Technology
 - Passive components
 - Active components
 - CMOS Process
- Basic Layout
- Scaling

CMOS Technology

- Integrated capacitive pressure sensor on 8" wafer using surface micromachining
- → Integrated single chip solution

Passive Components

- Passive components:
 - Resistors
 - Diffused/implanted resistors
 - Polysilicon resistors
 - Capacitors

Source: Allen, Holberg, "CMOS Analog Circuit Design"

Fabrication n+ Diffusion Resistor

n+ Diffusion Resistor

• Specific conductivity $\sigma = q(\mu_n n + \mu_p p)$

n >> p $\Rightarrow \sigma \approx q\mu_n n = q\mu_n N_D$

Resistance

$$R = \frac{1}{\sigma} \frac{L}{A} = \frac{1}{\sigma \cdot X_j} \frac{L}{W}$$
$$R = \frac{1}{q\mu_n N_D X_j} \frac{L}{W}$$
$$R_{\bullet} = \frac{1}{q\mu_n N_D X_j} = \text{``Square Resistance''}$$

σ: specific conductivity μ_n, μ_p : charge mobility X_j : p-n junction depth n,p: charge concentration $\frac{L}{W}$: Geometry factor N_D, N_A : donor, acceptor concentration

p-Substrate

n+ Diffusion Resistor

• Specific conductivity $\sigma = q(\mu_n n + \mu_p p)$

n >> p $\Rightarrow \sigma \approx q\mu_n n = q\mu_n N_D$

Resistance

$$R = \frac{1}{\sigma} \frac{L}{A} = \frac{1}{\sigma \cdot X_j} \frac{L}{W}$$
$$R = \frac{1}{q\mu_n N_D X_j} \frac{L}{W}$$
$$R_{\bullet} = \frac{1}{q\mu_n N_D X_j} = \text{``Square Resistance''}$$

σ: specific conductivity $μ_n, μ_p$: charge mobility X_j : p-n junction depth n,p: charge concentration $\frac{L}{W}$: Geometry factor N_D , N_A : donor, acceptor concentration

- Square resistance only depends on process parameters
 - $L = W \rightarrow R \square = R$
 - Resistors are specified as multiples of their square resistance

n+ Diffusion Resistor

- Typical values for *R*□:
 - Drain-source regions: 10..100 Ω/\Box
 - N-well: 1000...10000 Ω/\Box
- Absolute values for diffusion resistors
 - N_D, X_j, μ_n depend on process parameter
 - Diffusion concentration
 - Implantation dose
 - Diffusion temperature
 - Diffusion time
 - etc
 - W, L depend on lithography, etch process, lateral diffusion, etc
 - Edge definition has tolerance of ΔL , $\Delta W pprox 0.1 \mu m$
 - \rightarrow high tolerance for absolute values of resistance, 10-50%
- For high resistance values, large areas are required

Electrical Equivalent Model

- Contact resistances (R_k) add to resistance value
- Parasitic diode (pn-junction) to substrate → leakage currents, voltage dependent depletion layer capacitance,

Resistor Matching

- How accurate can a resistor ratio be fabricated
- Example: $R_2 = 2 R_1$

- If the resistors are fabbed in the same process,
- and are close together
- → process tolerances cancel out!
- \rightarrow with "good" layout the matching can be better than 1‰
- → for circuit design better use ratios!

Voltage Dependence Diffusion Resistance

Depletion zone width, W_n depends on junction reverse voltage bias, V_{pn}

$$W_n = \sqrt{\frac{2\varepsilon}{q}} \left(\frac{N_A + N_D}{N_A N_D}\right) \left(V_{bi} - V_{pn}\right)$$

 $X_i(V_{pn}) = X_i(V_{pn} = 0) - W_n(V_{pn})$

• \rightarrow Resistance increases with junction reverse voltage bias

Example

$$X_{i}(0) = 0.1 \mu m$$

$$N_{A} = 1.8 \cdot 10^{14} cm^{-3}$$

$$N_{D} = 10^{19} cm^{-3}$$

$$V_{bi} = 0.74V$$

$$W_{n}(V_{SP} = 0) = 4 \cdot 10^{-5} \mu m$$

$$W_{n}(V_{pn} = 10V) = 1.6 \cdot 10^{-4} \mu m$$

$$\Delta X_{i} \approx -1.6 \cdot 10^{-4} \mu m$$

$$\frac{\Delta X_i}{X_i} = -1.6 \cdot 10^{-3} \Longrightarrow \frac{\Delta R}{R} = 1.6 \cdot 10^{-3}$$

Voltage Coefficient Diffusion Resistance

$$\frac{1}{R} \cdot \frac{\Delta R}{\Delta V} = 1.6 \cdot 10^{-4} V^{-1} = 160 \, ppm \,/\, V$$

- Voltage dependency increases with:
 - Lower doping
 - Higher square resistance
 - Thinner layers
- Typical values
 - n+ implantation: 20 Ω/\Box 100ppm/V
 - p+ implantation: $100 \Omega/\Box$ 1100ppm/V
 - n- Implantation: 8 k Ω/\Box 20000 ppm/V

Temperature Dependency Diffusion Resistance

Effective mobility is temperature dependent

$$\mu = f(T) \quad \frac{\mu}{\mu_0} = \left(\frac{T}{T_0}\right)^{-m}; \quad m = f(N_D, N_A)$$
$$\Rightarrow \frac{R}{R_0} = \left(\frac{T}{T_0}\right)^m \quad \frac{1}{R} \cdot \frac{\Delta R}{\Delta T} = \frac{m}{T} = TK_R$$

- m depends on various scattering mechanisms
- Temperature dependence decreases for higher doping levels
- Typical values:
 - n+ implantation: 20 Ω/\Box 1500ppm/K
 - n- implantation: 8 k Ω/\Box 8000ppm/K

Polysilicon Resistors

p- substrate

Polysilicon Resistors

- highly doped polycrystalline silicon
 - used a Gate material, interconnects

Electrical equivalent circuit:

Current is nonlinear due to grain boundaries

$$I = I_s \cdot \sinh\left(\frac{eL_K}{2kTL} \cdot V\right)$$

- L: resistor length
- L_k: grain length, typ. 20..50nm
 - **Relatively good linearity** •

Voltage Dependency Polysilicon Resistors

$$\frac{1}{R} = \frac{dl}{dV} = l_s \frac{eL_K}{2kTL} \cosh\left(\frac{eL_k}{2kTL}V\right)$$
$$\frac{1}{R} \frac{dR}{dV} = \frac{1}{V} \left\{ 1 - \frac{eL_KV}{2kTL} \coth\left(\frac{eL_KV}{2kTL}\right) \right\}$$
$$\approx -\frac{1}{3} \left(\frac{eL_K}{2kTL}\right)^2 V$$

- Long resistors have better linearity
 - Typ. Value 10..100 ppm/V
 - e.g. W=25 μ m, L=2500 μ m \rightarrow 30 ppm/V

Temperature Dependency Polysilicon Resistors

$$\frac{1}{R}\frac{dR}{dT} = \frac{1}{T} \left\{ 1 - \frac{eL_K V}{2kTL} \operatorname{coth}\left(\frac{eL_K V}{2kTL}\right) \right\}$$
$$\approx \frac{1}{3T} \left(\frac{eL_K V}{2kTL}\right)^2$$

- Long resistors have lower temperature dependency
 - Typ. Value 100..500 ppm/K
 - e.g. L=300 μ m, V=2 V \rightarrow 200 ppm/K

Capacitors

- CMOS technology:
 - High quality, thin gate oxide layers are available
 - Using MOSFET, one can realize switches with low losses
 - Using MOSFET, one can read-out stored voltages without (almost) losses

Poly Diffusion Capacitor

- CMOS technology:
 - High quality, thin gate oxide layers are available
 - Thickness 5..50 nm (Field oxide about factor 10 thicker)
 - Using MOSFET, one can realize switches with low losses
 - Using MOSFET, one can read-out stored voltages without (almost) losses

Poly Diffusion Capacitor

- C* depends on the process only
 - Typical values 500 pF/mm² .. 1.5 nF/mm²
- Small temperature and voltage dependency
- Absolute accuracy 10%..20%
- Matched pairs accuracy < 0.1%
- Disadvantage: diode to substrate

```
\frac{1}{C}\frac{dC}{dT} \approx 20 \, ppm \, / \, K\frac{1}{C}\frac{dC}{dV} \approx 7 \, ppm \, / \, V
```


Poly-Poly Capacitor

Poly-Poly Capacitor

Poly-Poly Capacitor Absolute Value

Source of tolerances - 1. Edge uncertainty due to tolerances in • Lithography • Etching - \rightarrow W+ Δ and L+ Δ • Area A = WL, circumference U = 2 (W+L) $A^{\sim} = (W + \Delta)(L + \Delta) = WL + \Delta(W + L) + \Delta^{2}$

$$A^{`} = (W + \Delta)(L + \Delta) = WL + \Delta(W + L)$$
$$A^{`} = A + \Delta \frac{U}{2} + \Delta^{2} \approx A + \Delta \frac{U}{2}$$

$$\frac{A'-A}{A} = \Delta \frac{U}{2A}$$

- \rightarrow minimal error for minimum ratio U to A
 - \rightarrow quadratic layout (best spherical)
- 2. oxide thickness
 - Process dependent

Capacitors: Matching

- Area and circumference have to adjusted
 - Required capacitor value build up from quadratic unit capacitors
- Oxide thickness changes across a wafer (gradient)
 - Common centroid layout

- parasitic capacitors
 - Electrodes to substrate
 - Interconnect
 - Fringe field and stray capacitors
 - Can be in the same order as C₀
 - Circuit should be insensitive

example:

$$C_0 = \frac{\mathcal{E}_0 \mathcal{E}_{r,SiO_2}}{t_{OX}} \cdot A = C_{ox} \cdot A = C_{ox} \cdot W \cdot L$$

Precision of Passive Components

	Diffusion Resistor	Thinfilm Resistor	Capacitor
Absolute	10 – 50 %	≤ 1 %	10 – 30 %
Matching	0.05 – 0.1 % (9 – 10 bit)	0.01 - 0.1 % (9 – 12 bit)	0.02 – 0.3 % (7 – 11 bit)
Temperature Coefficient	2000 ppm/K	100 ppm/K	25 ppm/K
Voltage coefficient	(100 – 500) ppm/V	≤ 1 ppm/V	10 – 100 ppm/V

a) n-well

b) Aktive areas

c) Poly silicon

d) PMOS-Drain / Source

p-MOS Transistor

e) NMOS-Drain / Source

n-MOS Transistor

f) Contacts

g) Metal

MOSFET Structure

Layout

- Chips are specified with set of masks
- Minimum dimensions of masks determine transistor size (and hence speed, cost, and power)
- Feature size f = distance between source and drain
 - Set by minimum width of polysilicon
- Feature size improves 30% every 3 years or so
- Normalize for feature size when describing design rules
- Express rules in terms of $\lambda = f/2$

- E.g. λ = 0.3 μm in 0.6 μm process

Layout Design Rules

FIG 1.39 Simplified λ -based design rules

Design Rules Summary

- Metal and diffusion have minimum width and spacing of 4λ
- Contacts are $2\lambda \times 2\lambda$ and must be surrounded by 1λ on the layers above and below
- Polysilicon uses a width of 2λ
- Polysilicon overlaps diffusions by 2λ where a transistor is desired and has spacing or 1λ away where no transistor is desired
- Polysilicon and contacts have a spacing of 3λ from other polysilicon or contacts
- N-well surrounds pMOS transistors by 6 λ and avoid nMOS transistors by 6 λ

Gate Layout

- Layout can be very time consuming
 - Design gates to fit together nicely
 - Build a library of standard cells
- Standard cell design methodology
 - VDD and GND should abut (standard height)
 - Adjacent gates should satisfy design rules
 - nMOS at bottom and pMOS at top
 - All gates include well and substrate contacts

Inverter Layout

- Minimum size is $4\lambda / 2\lambda$, sometimes called 1 unit
- In f = 0.6 μm process, this is 1.2 μm wide, 0.6 μm long

FIG 1.40 Inverter with dimensions labeled

 V_{DD}

A

Example: Inverter Standard Cell Layout

FIG 1.41 Inverter standard cell layout

Example: 3-input NAND Standard Cell Layout

FIG 1.42 3-input NAND standard cell gate layouts

40 λ

- Horizontal n-diffusion and pdiffusion strips
- Vertical polysilicon gates
- Metal1 VDD rail at top
- Metal1 GND rail at bottom
- 32 λ by 40 λ

Stick Diagrams

- Stick diagrams help plan layout quickly
 - Need not be to scale
 - Draw with color pencils or dry-erase markers

FIG 1.43 Stick diagrams of inverter and 3-input NAND gate. Color version on inside front cover.

Wiring Tracks

- A wiring track is the space required for a wire
 - 4 λ width, 4 λ spacing from neighbor = 8 λ pitch
- Transistors also consume one wiring track

Well spacing

- Wells must surround transistors by 6 λ
 - Implies 12 λ between opposite transistor flavors
 - Leaves room for one wire track

Area Estimation

Estimate area by counting wiring tracks

- Multiply by 8 to express in λ

FIG 1.46 3-input NAND gate area estimation

Scaling

- The simplest and most common scaling approach is constant field scaling. The dimensions are scaled in the horizontal & vertical directions, and proportionally increasing the substrate doping by a factor λ, to keep the electric field distribution unchanged.
- One of the major changes in a short-channel device is that electric field in the channel region becomes two-dimensional due to the influence of the drain potential.
- The substrate doping has to be increased to decrease the depletion width (following from Poisson's equation).
- Small transistors have various undesired effects such as gate oxide degeneration due to 'hot' electrons, threshold voltage shift, gate-induced drain leakage, drain-induced barrier lowering (DIBL).
- Changes in the fabrication flow have to be introduced to mitigate these unwanted effects, and keep short-channel devices operational.

Constant Field Scaling N tox

Parameter	Factor
Dimensions (W, L, t _{OX} ,)	1/λ
Capacitors	1/λ
Voltages	1/λ
Currents	1/λ
Power	1/λ²
Noise density (kT/C)	λ
SNR	1/λ ³

Constant Field Scaling

Parameter	Scaling Factor
Device Dimensions W, L, tox	1/λ
Capacitance C	1/λ
Line Resistance	λ
Contact Resistance	λ^2
Line Delay	1
Voltage V	1/λ
Current I	1/λ
Power P	1 /λ ²
"On"-Resistance	1
Delay $T = R_{on}C$	1/λ
Power-Delay Product	1/λ ³
Transconductance g _m	1
Noise Power (kT/C)	λ
SNR	1/λ ³

Intel 20nm Technology

